笑话哦
很搞笑的冷笑话哦 !

压缩空气储能是笑话吗(压缩空气储能技术原理)

本文目录一览:

全球首创技术!压缩空气就能驱动汽车,能替代电动和燃油汽车吗?

为响应低碳环保的号召,厦门大学许教授开发的智能摩擦技术在轴承领域产业化实验中取得突破性进展。2021年4月7日厦门大学在百年校庆之际发布了一系列智能摩擦与新动能代表性科研成果。

未来这项技术将在风力发电、空气压缩储能、空气动能发动机领域发光发热。此次研发的空气动能发动机已经能在乘用车辆上预装运作。

空气动能发动机是什么黑 科技 ,只要压缩空气就能驱动 汽车 ,它能比过电车吗?

空气动能发动机听起来很高级,其实原理很简单,简单理解就是车上装上一瓶高压气罐,通过泄压产生的气流动能来推动活塞运作,让 汽车 动起来。它与电驱动的差别就在动力来源上,一个是压缩空气驱动,一个是电动机驱动。比起能效极高的电动机,空气动能发动机的工作原理和内燃机要更接近一些。

活塞式内燃机是通过空气混合燃料燃烧产生的高温高压燃气带动活塞运动,驱动 汽车 运动;空气动能发动机则少了燃烧的步骤,直接通过压缩空气的泄压来带动活塞。

空气动能发动机早在1903年就研发出来了,当时英国的一家液态空气公司突发奇想,想避开汽油直接使用压缩空气驱动 汽车 。空气动能发动机的原理很简单,他们通过简单的替换就完成了此项发明,只不过制造出的发动机无法产生足够的扭矩,无法驱动笨重的 汽车 。

一百多年来这项研究因为日益严重的化石燃料污染再次被提上日程,压缩空气车(CAV)和电动 汽车 都是未来可能替代燃油车的产物。

曾经充满噱头的氢气燃料车也是新能源车的一个主要研究方向,但因为能量转换效率低下,制氢消耗的电能可能比直接用来驱动 汽车 更多,导致这个项目完全失去了竞争力。这几年又跳出来的压缩空气车有能力和电动 汽车 一争高下吗?

单从能源清洁角度看,压缩空气车做到了完全的清洁,这一点和电动车没什么差别。但从能源损耗角度看,如果压缩空气的生产环节只要用到了电,那它的下场和氢燃料车一样,势必会造成电能的损耗,不如直接用电驱动 汽车 。

问题的根源来到压缩空气的生产环节,制造压缩空气是不是绕不开电?

压缩空气的生产很容易,市面上有大把的压缩空气机,只不过这些机器都是电驱动的。大规模的压缩空气生产肯定不能用这样的机器。和风力发电、水力发电、太阳能发电一样,这些可再生能源都可以直接转化为压缩空气能储存起来。

实际上我国的电能总体上来说是过剩的,白天用电总高于夜晚,火力发电站、水电站并不是说在晚上就不工作,发出的电无法储存只能任其流失。如果这些流失的能源能够转化成其他能源储存起来势必会节约大量能源。

而在储能能力上,最新的准等温压缩空气储能技术大大加强了压缩空气的储能效率。现压缩空气储能能力变为锂电池容量因子的4倍,达到2.7Mj/kg或3.6Mj/m3。市面上主流的磷酸铁锂电池单体能量密度在,160Wh/kg,换算成同单位为0.576Mj/kg。这些火电站产生的多余热量,水电站浪费的水能都能直接用来压缩空气,变成空气能储存起来。

实际上为了提高能源的利用效率,我国早在多年前就开始了剩余能源的储存计划,只不过这个计划的核心是放在抽水蓄能上。在有水利条件的水电站上游建立蓄水池,用多余的电能再把水抽上去续存起来,在电需求量大的时候再把蓄水池的水放出来发电。我国抽水蓄能电站装机容量已居世界第一,截至2018年底中国抽水蓄能装机容量为30GW,占发电总装机1.6%,在建规模为50GW。

不过水利储电的弊端也显而易见,那就是要有水和高低落差;反观压缩空气储能则不受地理因素左右,在未来有很大的应用前景。如果真能实现储能升级,压缩空气的生产打破桎梏,压缩空气车未来一定在新能源 汽车 榜上和电动 汽车 争一争。

解决了能源生产问题,压缩空气车还有一座大山要翻越,那就是发动机能效。电动 汽车 之所以能逐渐取代燃油车,最主要原因就是电动机比内燃机能源利用率要高得多。

内燃机通过燃烧产生膨胀的气体带动活塞运动,本身就会散出大量热能,这些热能的损失大大降低了内燃机的能源利用率。数据统计内燃机转化 汽车 动能的效率仅为17.9%,而电动机转化 汽车 动能效率为67%,当然这只是个平均数据,各自领域内顶尖的机器都能做到更高的水平。

空气动能发动机的能效能达到多少?

根据最新的研究报告,截止2020年,由加拿大Reza Alizade Evrin博士发布准等温压缩空气 汽车 原形拥有压缩空气车中最高的能效表现,达到了74%,这个数据与锂离子电动 汽车 效率的73%-90%还有一定差距,但仍然表现出了惊人的潜力。

不过看图就知道,这只是一个简约的模型机,距离实际投入使用还有很长一段路要走。

正常情况下,无论是空气压缩还是高压气体释放都会消耗大量能量,压缩时气体升温,泄压时气体降温。举个简单的例子,使用灭火器时,灭火器喷出高压的内容物,喷嘴、管道处会迅速降温,所以使用灭火器时不能捏着管子,而要握住特质的隔温喷头以防冻伤。

正因为这个物理特性,常规空气储能的系统效率仅为40%到45%,只有在绝热压缩的情况下,储能效率才能提高到70%至75%;而在压缩空气泄压释放的过程中,一般的空气动能发动机能效仅为50%,Reza Alizade Evrin博士的原型机使用低压储气罐和废气回收为石蜡热交换器系统提供动力,最大程度保证空气动能发动机的效能,才使得空气动能发动机摸到锂离子电动 汽车 能效的门槛,达到74%

从压缩空气储能到发动机能效上看,压缩空气车较之电动 汽车 可以说各有优劣,但这些数据表现只停留在实验阶段,距离商用它还有很长一段路要走。

压缩空气车投入商用将会碰到和电动 汽车 一样的问题——续航旅程。上文提到的那辆效能极高的空气动能原型机的续航仅为140公里,这个数据相比现在普通纯电 汽车 400公里的续航是远远不及的。

想获得更高的续航能力,有两个方向可以考虑,一个是提高单位储能,一个是增加压缩气罐的数量。压缩空气罐内的气压平均在30MPa以上,为保证安全性已经使用强度极高的碳纤材质作为罐体材料,提升单位储能难度很大。如果考虑堆叠气罐数量增加续航旅程,成本上又会提升一大截。

想当年电动 汽车 出来的时候也不过一两百公里的续航,经过几十年的技术积累现在也能与燃油车一较长短。只要大方向不错,说不定压缩空气车也能成为下一代的新能源车。

你觉得空气动能发动机靠谱吗?如果投入商用还有哪些路要走?

压缩空气储能是骗局吗

是。压缩空气储能是骗局,是一个伪科学,没有任何科学依据。空气,汉语词语,意思是地球上的大气,主要由氮气和氧气组成。

什么是压缩空气储能?

外电报道,比尔盖茨参与投资空气压缩储能新秀企业光帆能源(LightSail Energy)D轮融资3730万美元,因看好其未来新能源前景。压缩空气储能的原理是空气压缩时储能,膨胀时发电,利用低谷、风电、太阳能等不易储藏的电力来储能,在需要的时候发出来,完全不受地理条件的限制。

压缩空气储能是笑话吗(压缩空气储能技术原理)插图

浅析压缩空气储能

压空属于物理储能方式的一种,它与抽水蓄能齐名,无论是存储时间、放电功率、还是运行寿命,都有着卓越的表现,但它同样有着自身的缺点,比如系统复杂,比如受地域影响等。

一 压缩空气原理

压缩空气的基本原理很简单,在电网负荷低谷期将电能用于压缩空气,将空气高压密封在报废矿井、储气罐、山洞、过期油气井或新建储气井中,在电网负荷高峰期释放压缩空气推动汽轮机发电的储能方式,原理如下图所示。若需要更近一步解释,你只需锁定储气罐内的空气即可,两个动作,充气时储存能量,膨胀时释放能量。

然而,如果你在此处宣布已经掌握了压空技术,为时过早。要知道,原理不能解决任何问题,需要在原理的基础上舔砖加瓦,优化利用,才能达到合理的应用标准。于是,压空的各种变异横空出世,为了便于理解,我温度、压力、容积等方面着手,一步步深入介绍。

1.1 温度

我先强调一点:温度是一种能量。对于压缩机而言,压缩过程温度越低,耗费电能越少;与之相反,对于膨胀机而言,膨胀起始点温度越高,膨胀过程中得到的有用功越多。所以,降低压缩温度,或者提高膨胀进气温度,是提高系统效率的一种重要而有效的手段。请看下图变异1,在压缩机的出口增加了冷却器,以回收压缩热,在膨胀机(或涡轮机)的入口增加回热器,以提高进气温度。回热器的热量可由冷却器供给,如果必要,涡轮机的出口废弃也可以进一步回收,这取决于废弃的温度品味。该系统叫称为回热式系统。

相较于原理型系统,回热系统储电效率有所增加,然而它的不足在于,冷却器和回热器分开设置,在热量回收过程中存在较大热损失。为解决这一问题,有人提出绝热压缩空气系统,变异2,参照下图。将压缩过程中产生的热量存储起来,然后在发电过程中用这部分热量预热压缩空气,冷却器和回热器合为一体,对外进行绝热处理,业内称作先进绝热压缩空气储能系统(AA-CAES),该系统面临的最大挑战是如何经济、有效地设计和制造出压力工作范围大的压缩机、涡轮机和除热器。

一切比较完美,但还忽略一点,即使100%回收利用,压缩过程中产生的热量不足以使涡轮机持续长时间稳定运行,换句话说,只靠自身的热回收很难保持系统抵抗外部负荷波动。热量不够怎么办?引进额外热源,天然气,将天然气与来自储气罐的高压空气混合燃烧,推进涡轮机旋转发电。请看下图,变异3。对比以上系统,它的可靠性最高,稳定性最强,灵活性最优,所以在德国1978年建造首套压空储能电站时,果断采用这种方案。然而,变异3的引发的问题在于:消耗化石能源,增加温室气体排放。于是在国内做压空系统的高校研究所想方设法消除对外在热源的利用,比如清华大学的卢强院士,推非补燃压空系统。此处必须加句评论,难度都很大,不用补燃,系统复杂程度会提高,可靠性也会有波动,平衡各个功能单元,是一件技术含量很高的工作。

2 压力

谈到这里,如果你站起来宣布掌握了压空技术,我会告诉你又早了。除了温度之外,还有一个参数没有讲,压力!与温度相比,压力的影响更加多元。压缩阶段,压力越高,同等温度下空气密度越大,同等体积的储罐储存的空气量更多,储能密度更高;膨胀阶段,初始入口压力越高,出口压力越低,有用功输出越高。

现在的问题来了,能不能只使用一台压缩机,比如从1个大气压直接压缩到100个atm?膨胀过程从40个atm膨胀到1atm?我可以负责任的告诉你,理论上可以,但如果你真敢这么做,保证系统电-电转换效率会低的让你下不来台!如何解决这一问题?热力学给出的指引是多级压缩,中间冷却,可显著降低压缩过程中的电力消耗;多级膨胀,中间加热,可显著增加膨胀过程中的发电量,综合起来,储电效率必然显著提高。

下图为非补燃多级压缩系统图,可以看出,在每台压缩机后加装热回收器,通过回热系统将热量传递到各级膨胀机的入口处。

当系统采用绝热压缩时,综合多级压缩和多级膨胀,组成的系统如下图所示。

采用燃气补热的系统,多级压缩阶段与非补燃一致,不同的是在各级膨胀机入口加装燃烧室,详见下图。

1.3 容积

压空系统的技术痛点在于气体的密度太低,常压下空气密度为1.25kg/m3,即使在10Mpa高压下密度也只有100kg/m3左右,相比水的1000kg/m3,差了足足十倍,这意味在相同储存质量下,空气的罐子要比水大十倍。要解决大规模空气存储的方法至少有3个,方法一,就地取材,寻找废弃的矿井,进行密封承压方面的改造,然后将空气压入其中,这种方法既经济又可靠,而且储量惊人,比如德国的Huntorf压空电站可储存30万立方的空气,但是,这种方式受制于地形限制,灵活性差,比如我想在南京建一座压空电站,即使金坛的溶洞再优越,我也用不上。方法二,高压储气罐,该方式操作灵活,完全不受地域地形限制,比如中科院在廊坊的示范项目,采用2个直径2.4m,长10m的储罐,每个储存45m3的高压空气,储罐压力10Mpa,储罐设备属于特种设备范畴,无论从制造,安装还是运行,都要经过严格的检查,成本相对较高。方法三,空气液化。为了进一步减小储罐体积,有专家想到了变态,将气体液化,密度将增加上百倍,于是体积减少上百倍,通过设计,使膨胀机出口的空气温度低于78.6K(-196.5℃)时,空气被液化,系统流程见下图,这种系统的特点是体积小,管路复杂,效率低。我在一次讲座上跟东大热能所的肖睿教授聊天时得知,他测算过液化压空储能的理论效率60%,实际效率能打七折就已经很不错了。

1.4 冷热电三联供

在储能领域,压空算是个另类,不能用传统的评价标准衡量它,比如只追求电-电存储效率,压空肯定毫无优势,非补燃机组能达到40%已算很不错了。但它在发电的同时,还能兼顾供冷和供热,俗称冷热电三联供,其实原理没有任何改变,只是将压缩过程产生的热量用于供热,膨胀机出口的低温空气用于制冷,膨胀产生的有用功用于发电,详见下图。冷热电三联供的特点是能源利用效率高,若以热能利用为基础测算,系统效率可达70-85%。

二 系统特点

在储能家族中,压空和抽水蓄能属于一个阵营,即是一种可以大功率,长时运行的物理储能技术,各种技术对比见下图(CAES),技术特点如下:

(1)输出功率大(MW级),持续时间长(数小时);

(2)单位建设成本低于抽水蓄能,具有较好的经济性;

(3)运行寿命长,可循环上万次,寿命可达40年;

(4)环境友好,零排放。

三 系统结构

一套完整的压空系统五大关键设备组成:由压缩机、储气罐、回热器、膨胀机以及发电机,结构详图如下。

3.1 压缩机

压缩机是一种提升气体压力的设备,见下图。压缩机的种类和压缩方式各不相同,但设计者会更关心它的进出口压力参数,表征为四个参数,一是工作压力区间,二是压缩比,即进出口压力比值,三是进出口温度或绝热效率,四是压缩功率与流量。清华大学卢强院士的500kw压空系统中所用其中一台压缩机参数为:进气压力1atm,25℃,排气压力3.5atm,143℃,压缩比3.5,轴功率76.7kw。

3.2 储气罐

储气罐是高压空气的出厂场所,说白了就是一个岩洞或者一个罐子。这里还是要强调,温度是一种能量,60℃和20℃条件下,空气的能量大不一样,所以有必要对储罐进行保温处理,尽量维持罐内温度一致,减小对流损失。尺寸与耐压等级等制造问题,交给工厂。

3.3 回热器

回热器是热交换器的统称,包括预热器,冷却器,换热器等等,回热器的功能是通过温差传热回收热量,达到节能效果。

3.4 膨胀机

膨胀机的英文名字叫“turbine”,又叫透平,也有叫涡轮机的,它的功能是通过膨胀,将空气的内能转化为动能,推动与之相连的发电机,又将动能转化为电能,见下图。标定膨胀机的参数有进出口压力与温度,膨胀系数等。

3.5 发电机

发电机是一种发电设备,将各种形式的能量转化成电能,此处略过。

四 压空系统应用领域

(1)调峰与调频。大规模压空系统最重要的应用就是调峰和调频,调峰的压空电站分为两类,独立电站以及与电站匹配的压空系统。

(2)可再生能源消纳。压空系统可将间断的可再生能源储存起来,在用电高峰期释放,可显著提高可再生能源的利用率。

(3)分布式能源。大电网和分布式能源系统结合是未来高效、低碳、安全利用能源的必然趋势。由于压空具备冷热电联供的优点,在分布式系统中将会有很好的应用。

五 性能评价指标

为了更清楚表达工作过程的能量传递,我借用了哈佛大学Azziz教授论文中的一张图,见上图。其中W为电功,Q为热量,箭头向内代表进入系统,向外表示系统输出,流程箭头代表空气流向。一目了然,比如压缩机工作消耗的电能来自于电网,膨胀时向电网输出电能,都能直观看到,并且判断:系统用电越小越好,回收的热量越多越好,向外输出的电能越大越好。

在我看来,表征系统性能的参数主要有两个,一个是电能存储效率,另一个是系统能量效率。电能存储效率是电能输出与输入的比值,这对电网运营至关重要;系统能量效率是输出的电能+热能与输入之比,表征整个系统的总效率,这对压空系统至关重要。

六 国内外压空项目

6.1 德国Huntorf

Huntorf是德国1978年投入商业运行的电站,目前仍在运行中,是世界上最大容量的压缩空气储能电站。机组的压缩机功率60MW,释能输出功率为290MW。系统将压缩空气存储在地下600m的废弃矿洞中,矿洞总容积达3.1×105m,压缩空气的压力最高可达10MPa。机组可连续充气8h,连续发电2h。该电站在1979年至1991年期间共启动并网5000多次,平均启动可靠性97.6%。电站采用天然气补燃方案,实际运行效率约为42%,扣除补燃后的实际效率为19%。

6.2 美国McIntosh

美国Alabama州的McIntosh压缩空气储能电站1991年投入商业运行。储能电站压缩机组功率为50MW,发电功率为110MW。储气洞穴在地下450m,总容积为5.6×105m,压缩空气储气压力为7.5MPa。可以实现连续41h空气压缩和26h发电,机组从启动到满负荷约需9min。该电站由Alabama州电力公司的能源控制中心进行远距离自动控制。与Huntorf类似的是,仍然采用天然气补燃,实际运行效率约为54%,扣除补燃后的实际效率20%。

6.3 日本上砂川盯

日本于2001年投入运行的上砂川盯压缩空气储能示范项目,位于北海道空知郡,输出功率为2MW,是日本开发400MW机组的工业试验用中间机组。它利用废弃的煤矿坑(约在地下450m处)作为储气洞穴,最大压力为8MPa。

6.4 中国

我国对压缩空气储能系统的研究开发开始比较晚,大多集中在理论和小型实验层面,目前还没有投入商业运行的压缩空气储能电站。中科院工程热物理研究所正在建设1.5MW先进压缩空气储能示范系统,该系统为非补燃方案,理论效率41%,实际运行效率33%。

在建的项目有江苏金坛压缩空气储能电站,利用盐穴储气,占地60.5平方公里,最大容腔体积32万㎡。

七 国内企业和机构

7.1 中科院热物理所

中科院工程热物理所在10MW先进压缩空气储能系统研发与示范方面,已完成10MW先进压缩空气储能系统和关键部件的设计,基本完成宽负荷压缩机、高负荷透平膨胀机、蓄热(冷)换热器等关键部件的委托加工,正在开展关键部件的集成与性能测试;全面展开示范系统的集成建设,于2016年6月完成。

7.2 清华大学电机系

清华大学电极控制理论与数字化研究室,由卢强,梅生伟等带头,该团队主要研究智能微电网,压缩空气储能等,压空方面的主要路线为非补燃型压缩空气储能技术。

7.3 澳能(毕节)

澳能集团有限公司简称澳能工业,成立于2011年,是在与中国科学院工程热物理所合作开发超临界压缩空气储能技术,利用电网负荷低谷期的余电或可再生资源发电不能并网的废电将空气压缩到超临界状态并存储压缩热,利用系统过程存储的冷能将超临界空气冷却液化存储(储能);在发电过程中,液态空气加压吸热至超临界状态(同时液态空气中的冷能被回收存储),并进一步吸收压缩热后通过涡轮膨胀机驱动发电机发电(释能)。通过系统热能和冷能的存储、回收,实现系统效率的提高。超临界压缩空气储能利用空气的超临界特性,同时解决了传统压缩空气储能依赖大型储气室和化石燃料的两个技术瓶颈。

关于微控新能源

深圳微控新能源技术有限公司(简称微控或微控新能源)是全球物理储能技术领航者。公司全球总部位于深圳,业务覆盖北美、欧洲、亚洲、拉美等地区,凭借“安全、可靠、高效”的全球领先的磁悬浮能源技术,产品与服务广泛受到华为、GE、ABB、西门子、爱默生等众多世界500强企业的信赖。

面向未来能源“更清洁、高密度、数字化”的三大趋势,公司持续致力于为战略性新兴产业提供能源运输、储存、回收、数据化管理提供系统解决方案。

压缩空气储存电量?这是什么原理?

随着经济科学的不断发展,人类对于电力的用量是越来越大,对于一些用传统能源来发电的电力是远远不够的,尤其是对不可再生资源的发电,总有一天可能会消耗殆尽。所以发展新能源发展和可循环发电的方法是当前工业发展及经济发展所需要的。压缩空气储存电量依靠当前的技术是可以实现的,并且压缩空气存储电量的优点动态响应快、经济价值高、对环境污染小;它的原理是利用现有的电力系统低容负荷状态下多余电能将空气压缩储存在地下洞穴中,在需要的时候再放出来,然后经过加热后通过燃气轮机发电机组发电,以达到供应的需要。一、压缩空气储存电量的优势是什么

压缩空气储存电量是一种新型电能存储系统,这种系统具有动态响应快的优势,操作性非常灵活,而且压缩的空气瞬间就可以使用,3分钟即可从空载达到额定出力,适于作旋转备用;它还具有发电效率高的优势,压缩空气储存电量的发电功率是常规机电站的3倍,而且拥有很好的能量密度;它的优势还具有布置灵活,不想水电站和风能一样还要选定特地的地理环境才可以实现,这种电力系统的选址要求是比较简单的。二、压缩空气存储电量的电站经济效益和环保效益好吗

压缩空气储存电量的电力系统的经济效益和环保效益都是不错的,压缩空气存储电量的电站在一个充压和释放的循环中发出的电量大于充压所需的电量,有效的改进电网的负荷率,有效的提高其经济效益,而且不用特地的选址等,减少了投建的成本,一定程度上也是增加了其经理效益。压缩空气储存电量也是一个比较环保的储能电站,因为它不需要大量的设施和设备或者是消耗其他能源来换取,所以其环保效益是非常好的。

压缩空气储存电量是目前正在推广的储能电量系统,但是因为这是一个新的储能系统,目前还没有真正的推广出来,所以目前是在逐年推广的。

赞(0)
未经允许不得转载:笑话哦 » 压缩空气储能是笑话吗(压缩空气储能技术原理)

评论 抢沙发